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The present report is an introduction to the quantum theory of dissipative systems. Dissipation
is modeled by a linear coupling of the system coordinate to a collection of harmonic oscillators.
This model is then treated in an imaginary time path integral formalism. The averaging over the
harmonic oscillator degrees of freedom, often called ‘integration of the bath’, yields an effective
action that completely describes the systems coupling to the environment. The remainder of the
report then illustrates the physical effects of dissipation in the case of tunneling from a metastable
state and in a double well potential. It is found that dissipation generally suppresses the quantum
effects of tunneling and interference.

I. INTRODUCTION

Quantum mechanics has been hugely successful since
its development in the beginning of the 20th century and
is in excellent agreement with experiments. Neverthe-
less, at least one major issue remains: Many effects of
quantum mechanics, such as e.g. interference, are not
observed in our classical, macroscopic world. If quantum
mechanics truly is a fundamental theory, it must provide
an explanation as to why these effects are not observed in
macroscopic contexts. Moreover, the classical limit must
be derivable from the underlying quantum theory. The
resulting task in the sixties was thus to find a way to
maintain the validity of quantum mechanics macroscop-
ically. A way to approach this problem is to couple the
quantum system of interest to an environment.

When people first started to model the environment
with extra terms in the Hamiltonian the challenge was
to effectively deal with these more complicated Hamilto-
nians in the standard operator formalism. More effective
attempts were made by using Richard Feynman’s path
integral formulation of quantum mechanics [1]. Feyn-
man himself developed, together with his doctoral stu-
dent Frank Vernon, an effective treatment of systems
coupled to an environment with a real time path inte-
gral method in 1963 [2]. Twenty years later Caldeira
and Leggett [3] presented a method to treat a system
coupling to an environment in an imaginary time path
integral approach, which simplified several calculations.

Since then this formulation has proven very useful to
describe the behavior of a system coupled to an environ-
ment. A few examples are: a metastable state within
a cubic potential (decay), oscillations within a double
well potential and a treatment of dissipation for two level
systems (Spin-Boson problem). The latter is of special
interest in the quickly evolving field of quantum compu-
tation where one exploits quantum effects to develop new
computing techniques. But most importantly, quantum
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dissipation gives explanations for the lack of quantum
effects in our macroscopic, classical world.

We have structured our discussion of quantum dissi-
pation into a four-course composition. The first section
is focussed around describing dissipation in the quan-
tum mechanical formalism. Its aim is to formulate the
problem and present the Caldeira-Leggett model which
we will use throughout the remainder of the report. In
the second section we show how the path integral for-
malism provides a natural setting in which the effects of
an environment on a quantum system can be explored.
Following these two theoretical sections, we will apply
the formalism to the problem of metastable decay and
the double well potential in the third section. To con-
clude we will briefly review the principal results of this
discussion and provide you with an outlook as well as a
guide to the literature. We hope the topic may fascinate
you as much as it fascinated ourselves and wish you ‘bon
appétit’ !

II. INCLUDING DISSIPATION INTO
QUANTUM MECHANICS

As an amuse-bouche, we will briefly review the classical
treatment of dissipation. The entrée is then formed by
the description of dissipation in a quantum mechanical
framework along the lines of Caldeira and Leggett [4]. In
essence, we will learn that dissipation can be modelled by
coupling the system of interest to a collection of indepen-
dent harmonic oscillators, which we call the ‘heat bath’
or for short ‘bath’1. Even though such a description sug-
gests that we need to know the microscopic properties
of each oscillator, it will turn out that we can describe
the bath phenomenologically with the help of a spectral
density function.

1 We use the terms environment, bath and heat bath synony-
mously.
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A. What is Dissipation?

Before we can include dissipation into the formalism of
quantum mechanics, we must first define more precisely
what this term means. In this paper we will understand
dissipation as loss of energy to environmental degrees of
freedom, that is degrees of freedom in which we are not
directly interested. To form an idea of how a phenomenon
like this could be integrated into quantum mechanics, it
pays off to first review its classical treatment. In classical
physics we describe dissipative effects with an equation
of motion akin to

Mq̈ +
dV

dq
+ ηq̇ = 0, (1)

where q is the generalized system coordinate, M a mass
parameter and η a damping parameter. The dissipa-
tion is encoded in this equation through the third term,
which depends linearly on the generalized velocity. Such
an equation of motion can describe a damped pendulum
or an RLC circuit for instance. If we add a fluctuat-
ing force ξ(t) to the right side of this equation it can be
used to model not only the damped average motion of
a system but also fluctuations around it. This general-
ized, stochastic equation is known as Langevin equation
[5] and is used for example to describe Brownian mo-
tion or thermal noise in a resistor. It is important to
note that the inclusion of dissipation in this equation is
purely phenomenological. There is no mention of the mi-
croscopic mechanisms that produce the friction or fluctu-
ations. They are hidden in η and ξ(t) respectively. This
allows us to treat dissipation without knowing the micro-
scopic details of all the interactions that produce it.
To find a quantum mechanical description of dissipation
one needs to take more care. A major difficulty is that the
quantum mechanical formalism ensures energy conserva-
tion if the Hamiltonian is not explicitly time dependent.
Several approaches have been developed to circumvent
this problem. A particularly successful and quite general
approach began with the seminal work of Caldeira and
Leggett [4] and has proven fruitful for numerous theoret-
ical investigations on the effect of an environment on a
quantum mechanical system. We will focus our discus-
sion on this approach, which is known as the Caldeira-
Leggett Model.

B. The Caldeira-Leggett Model

1. The Main Idea

In the Caldeira-Leggett model one looks at the total
system which includes the environment and the system
of interest as shown in Figure (1). The total system is
described quantum mechanically with a time indepen-
dent Hamiltonian, so the total energy is conserved. As a
model for the bath we choose a collection of N quantum
harmonic oscillators which are not coupled to each other.

This choice makes sense for two reasons. The first reason
is a practical one. A harmonic oscillator is one of the
few systems that can be treated analytically in quantum
mechanics and will greatly simplify calculations later on.
The second reason is physical. If the temperature of the
heat bath is not too high, that is if the energy in the heat
bath is sufficiently ‘dilute’ that each individual environ-
mental degree of freedom carries just a slight amount of
energy, we can approximate these degrees of freedom lo-
cally around their potential minimum. Such an approx-
imation leads to harmonic oscillators at leading order.
Finally, we choose the coupling between the system and

Figure 1. Illustration of the Caldeira-Leggett Model. The
total system (system + bath) is described quantum mechan-
ically and the energy of the total system is conserved. The
environment (bath) is modeled as a collection of harmonic os-
cillators that are not coupled to each other. A linear coupling
between system and environment enables energy transfer.

the bath to be linear in both the system and the bath
coordinates. This comes again mainly from a practical
consideration: as we will learn for a linear coupling we
can integrate out the individual bath coordinates 2. One
can then write down the Caldeira-Leggett Hamiltonian as
follows

HCL =
p2

2M
+ V (q)︸ ︷︷ ︸
HS

+

N∑
i=1

(
p2
i

2mi
+
mi

2
ω2
i x

2
i

)
︸ ︷︷ ︸

HB

− q

N∑
i=1

cixi + q2
N∑
i=1

c2i
2miω2

i︸ ︷︷ ︸
HSB

. (2)

In this expression q, p are the generalized system coordi-
nate and momentum, M is a mass parameter and xi, pi
are the generalized coordinates and momenta of the
individual harmonic oscillators in the bath. The mi and
ωi specify the properties of each bath mode and the ci

2 In fact, to carry out the ‘integration of the bath’ it is sufficient
for the coupling to be linear in the bath coordinates only, but
the resulting expressions become more tedious to work with. We
will not pursue this approach further.
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are coupling constants. Note that the bath Hamiltonian
is the sum of N independent harmonic oscillators,
as described above. The system-bath interaction is
contained in the HSB part of the Hamiltonian. This
consists of a bilinear coupling between the system and
the oscillator modes (first term) and a counter term
(second term) that is added to prevent a renormalization
of the system potential V . If it were not present, the
coupling to the oscillators would shift the extremum of
the potential. It is important to note that this counter
term does not couple the coordinates q and xi.

2. The Classical Limit

To see that the Hamiltonian (2) produces the familiar
effects of dissipation and fluctuation in our system, we
have to convince ourselves that the equations of motion
from this Hamiltonian reduce to the Langevin equation
in the classical limit. We start with the Heisenberg equa-
tion of motion dA

dt = (i/~)[H, A] to find the equations of
motion for the operators q and xi,

System E.O.M Mq̈ +
dV

dq
+ q

∑
i

c2i
miωi

=
∑
i

cixi

(3)

Bath E.O.M ẍi + ω2
i xi =

ci
mi

q (4)

Note that the bath equations of motion (4) are those of
a driven harmonic oscillator. If we assume q to be given,
we can formally solve these equations for given initial
conditions3. Doing so and plugging the solution for xi(t)
into the system equation of motion (3) yields

Mq̈ +
dV

dq
+

ˆ t

0

ds γ(t− s)q̇(s) = ξ(t), (5)

where the damping kernel γ is defined as

γ(t) =

N∑
i

c2i
miω2

i

cos(ωit) (6)

and the function ξ(t) represents a fluctuating force that
depends on the initial conditions of the bath and system
coordinates. The equilibrium expectation value of this
fluctuating force vanishes [6].

Up to now we have worked with finitely many bath
modes. If for example the system is also a harmonic

3 The solution is

xi(t) = xi(0) cos(ωit)+
pi(0)

miωi
sin(ωit)+

ˆ t

0
ds

ci

miωi
sin(ωi(t− s))q(s).

oscillator, we can use a normal mode representation to
convince ourselves that the system will return to its
initial state after a possibly long, but finite, amount
of time. More generally, this phenomenon is known as
Poincaré Recurrence and leads to trouble if we want
to actually describe dissipation [6]. Luckily, there is a
way around this problem. We can assume a continuous
distribution of bath modes and take the limit N →∞.

In order to make the above description useful even if
we do not have a microscopic model of our bath it is
convenient to define the spectral density of bath modes

J(ω) ≡ π

2

∑
i

c2i
miωi

δ(ω − ωi). (7)

This spectral density is a phenomenological quantity that
contains information about the bath modes and their
coupling to the system and is sufficient to characterize
the heat bath [6]. In practice, one works by specifying a
choice for the spectral density J(ω) without explicitly
giving all ci, ωi and mi. An important spectral density,
with which we will work with throughout this paper,
is the so called ohmic density J(ω) = ηω. Note that a
truly ohmic bath is not physical, since an integration
over all bath modes would lead to an infinite amount of
energy contained in the bath. In practice, to evade this
so called UV-catastrophe one defines a cut-off frequency
after which the functional dependence of the spectral
density drops to 0 quickly.

Having defined the spectral density we rewrite the
damping kernel as

γ(t) =
2

π

ˆ ∞
0

dω
J(ω)

ω
cos(ωt). (8)

For ohmic damping we can evaluate this damping kernel
and find γ(t) = 2ηδ(t). Inserting this in Eq. (5) we
find the operator equation of motion for strictly ohmic
dissipation

Mq̈ +
dV

dq
+ ηq̇ = ξ(t). (9)

The form of this equation is equivalent to Langevin’s
equation. Indeed, with the use of Ehrenfest’s The-
orem we see that the Caldeira-Leggett Hamiltonian
reproduces the phenomenological equation of motion
describing dissipation (1) in the classical limit. This
is an indication that the Caldeira-Leggett Hamiltonian
allows us to generalize dissipation to a quantum system.

3. In a Nutshell

Before we proceed and learn how to effectively work
with this formalism, let us pause a moment to recapit-
ulate what we have learned. The essential idea of the
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Caldeira-Leggett model is that we couple the system
to an environment represented by quantum harmonic
oscillators. The physics of dissipation and fluctuation is
then obtained from an energy flow between the system
and bath. We saw that due to Poincaré Recurrence it
makes sense to assume a continuous distribution of bath
modes, which we describe phenomenologically by the
spectral density. This is useful because it frees us from
having to specify the properties of each environmental
degree of freedom individually. Finally, we convinced
ourselves that we can recover the Langevin equation
in the classical limit. Of course not every dissipative
system can be described by such a Hamiltonian, but
this model gives a good effective description for a wide
variety of systems, and maybe equally important, it
allows for analytical treatment.

III. QUANTUM DISSIPATION WITHIN THE
PATH INTEGRAL FORMALISM

We now come to the first main course. In this sec-
tion we will study the time evolution of density matrix
elements of an arbitrary system coupled to an environ-
ment at thermal equilibrium. As a result we will be able
to express these matrix elements through the so called
effective action Seff which contains all the information
about the environment.

ρβ(q, q′) =
1

Z

ˆ
Dq̄ exp

[
−1

~
Seff[q̄]

]
(10)

This is one of the principal results of the formalism in-
troduced by Caldeira and Legget in 1981 [4] and will be
derived below in the path integral formalism in imagi-
nary time. The special thing to note is that the effective
action is independent of the coordinates xi of the individ-
ual oscillators in the bath. The reason for this is that the
formula arises from an averaging process over all the bath
modes which is known in the literature as integration of
the bath. Also note that in contrast to the previous sec-
tion, in which we worked within the operator formalism
of quantum mechanics, in the path integral formalism we
deal with scalar functions instead.

A. Introduction to the Formalism

Before we actually start to work with dissipation let us
introduce some concepts4 starting with the density ma-
trix. As we know from thermodynamics, the probability

4 We do not claim to provide an extensive introduction. To get a
thorough understanding of the involved concepts a study of the
literature is highly advised. Interested readers are referred to [7]
and references therein.

to find a system in the n-th energy eigenstate in thermal
equilibrium5 is given by

Pn =
1

Zβ
e−βEn (11)

where Zβ denotes the system partition function and
β = (kBT )−1 with kB the Boltzmann constant and T
the temperature. The partition function is defined as
Zβ = tr

(
e−βH

)
. In analogy we define the density matrix

of a system in thermal equilibrium as

ρβ(q, q′) =
1

Zβ
〈q |exp (−Hβ)| q′〉 . (12)

and state that the probability of a system being in state
|q〉 at time t is given by ρβ(q, q, t).6 From previous chap-
ters of this proseminar we know that the above matrix
element can be obtained by performing a Wick rotation.
We then called this modified path integral imaginary time
path integral and find

ρβ(q, q′, t) =
1

Zβ

ˆ q̄(t)=q′

q̄(0)=q

Dq̄ exp

(
−1

~
SE [q̄]

)
. (13)

Here we use barred variables (q̄) to represent paths. A
path evaluated at a certain time corresponds to a certain
value of the associated variable (e.g. q̄(t) = q). SE de-
notes the euclidean action obtained from the classical ac-
tion by performing a Wick rotation. The euclidean action
can be found by inverting the potential (i.e. V 7→ −V )
which leads to

SE =

ˆ
dτ LE(q, q̇, τ) =

ˆ
dτ (T + V ) (14)

with L the euclidean Lagrangian, T the kinetic energy
and V the potential energy. Note that the effective action
equals to the imaginary time integral over the Hamilto-
nian (2).

B. Formulation of the Problem

Knowing the density matrix for every time is equiva-
lent to knowing the time evolution of the system. From
the Hamiltonian (2) we can directly obtain the euclidean
action:

SE [q̄, {x̄i}] = SES [q̄] + SEB [{x̄i}] + SESB[q̄, {x̄i}] (15)

5 It turns out that beeing in thermal equilibrium does not constrain
our system in any way since this is only a statistical condition.
Furthermore, it is a requirement for our environment to be in
thermal equilibrium.

6 Note that this is even true if |q〉 does not represent the energy
eigenbasis. In fact we will use |q〉 as a position eigenstate.
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with7

SES [q̄] =

ˆ ~β

0

dτ

[
M

2
˙̄q2 + V (q̄)

]
(16)

SEB [{x̄i}] =

ˆ ~β

0

dτ

N∑
i=1

mi

2

(
˙̄x2
i + ω2

i x̄
2
i

)
(17)

SESB[q̄, {x̄i}] =

ˆ ~β

0

dτ

[
−q̄

N∑
i=1

cix̄i + q̄2
N∑
i=1

c2i
2miω2

i

]
.

(18)
Besides plugging this action into (13) we have to inte-

grate over the coordinates of the system (q) and the bath
ones ({xi})8. This leads to a density matrix for the total
system

Wβ(q, {xi}, q′, {x′i}) = (19)

1

Zβ

ˆ q̄(~β)=q′

q̄(0)=q

Dq̄
ˆ x̄i(~β)=x′

i

x̄i(0)=xi

{Dx̄i}exp

(
−1

~
S[q̄, {x̄i}]

)
.

Since we only care about the behaviour of our system,
the time evolution of the bath is not of interest for us.
Furthermore we do not want to be forced to choose the
bath explicitly to get a density matrix element for our
system. Somehow we have to deal with these degrees of
freedom. The most convenient way is to average them
out, i.e. we take the expected influence of each bath os-
cillator on the system. This procedure is called tracing
out, which means one takes the trace over the bath co-
ordinates to get to the so called reduced density matrix
of a system

ρβ(q, q′, t) = trB(Wβ(q, {xi}, q′, {x′i}, t)).

We may write the trace as an integral over all possible
values of xi for each bath oscillator. Translated into the
path integral formalism we obtain for (13)

ρβ(q, q′, t) =
1

Zβ

ˆ q̄(~β)=q′

q̄(0)=q

Dq̄
ˆ ∞
−∞
{dxi}

×
˛ x̄i(~β)=xi

x̄i(0)=xi

{Dx̄i} exp

(
−1

~
S[q̄, {x̄i}]

)
. (20)

The circled integral indicates a closed integration. An
important remark here, since we are taking the trace
over the bath degrees of freedom, we are only consid-
ering closed paths (i.e. paths with the same initial and
final value). We aim to perform these integrations for ar-
bitrary systems, but first we will reformulate the problem

7 From now on we will drop the label E for euclidean.
8 Whenever we use brackets {} we mean a set of variables.

in a more structured way. The reduced density matrix
can be rewritten in a more compact form as

ρβ(q, q′, t) =
1

Z

ˆ
Dq̄ exp

(
−1

~
SS [q̄]

)
F [q̄]. (21)

Here Z stands for the partition function of only our sys-
tem and SS is the system action (16). Additionally we
introduced the influence functional F [q̄] which represents
the influence of the environment on the system. We can
decompose it in the form

F [q̄] =

N∏
i=1

1

Zi
Fi[q̄] (22)

with Zi the partition function of a single bath oscillator
and Fi[q̄] the influence of a single oscillator. The influence
of a single oscillator explicitly reads as

Fi[q̄] =

ˆ
dxi

˛
Dx̄i exp

(
−1

~
Si[q̄, x̄i]

)
(23)

and

Si[q̄, x̄i] =

ˆ ~β

0

dτ
mi

2

[
˙̄x2
i + ω2

i

(
x̄i −

ci
miω2

i

q̄

)2
]
.(24)

The problem of finding the density matrix of an arbi-
trary system is now reduced to determining the influence
functional F [q̄], which is known as the integration of the
bath.

C. Integration of the Bath

First of all one has to deal with the paths appearing in
the action (24). We recall that these paths x̄i have to be
closed as a consequence of taking the trace. After a peri-
odic continuation we can think of them as being periodic
functions and expand them in a Fourier series. We do
the same also for the paths q̄ even though these paths do
not have to be periodic. Consequently this derivation of
the density matrix elements only holds for the diagonal
elements where the periodicity condition also holds for q̄.
However, these will be the only restriction needed in the
further discussion. The Fourier expansions read

x̄i(τ) =
∑
n

xi,ne
iνnτ (25)

q̄(τ) =
∑
n

qne
iνnτ (26)

with νn = 2π
~βn. Since x̄i(τ) represents a real function

(path) it holds that xi,−n = x∗i,n. Inserting these Fourier
expansions into (24) leads to:

Si = ~β
∑
n

mi

2

[
ν2
n|xn|

2
+ ω2

i

∣∣∣∣xn − ci
miω2

i

qn

∣∣∣∣2
]
.(27)
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Here we have used that
´ ~β

0
dτ eiτ(νn+νn′ ) = ~βδn,−n′ ,

due to the orthogonality of eiνnτ . The ν2
n factor results

from the derivative and one observes that |xn|2 = xi,n ·
xi,−n. Similarly the second term in the sum of (27) is
obtained since the period of q̄(τ) has to be the same
as the one of x̄i(τ). Next we perform a semi-classical
approximation.

Si(x̄i) = Si(x̄cl
i ) +

1

2
ȳi
∂2Si
∂x̄2

i

∣∣∣∣
x̄i=x̄cl

i

ȳi (28)

x̄cl
i denotes the classical path and ȳi is a perturbation

around the classical path. The action has a station-
ary point at this path, which is why the first functional
derivative does not appear in (28). Since the action (24)
is at most quadratic in x̄i the above expression is not an
approximation but rather correct. Deriving the Euler-
Lagrange equations for our Lagrangian 9 leads to

¨̄xi − ω2
i x̄i = − ci

mi
q̄. (29)

Inserting the Fourier series Ansatz leads to a relation
between the Fourier series coefficients of xn,i and qn.

xcl
n,i =

ci
mi(ν2

n + ω2
i )
qn (30)

With x̄i = x̄cli + ȳi which directly translates to the same
statement for the Fourier series coefficients, we are able
to express (27) trough the classical path and the pertur-
bation.

Si[x̄cl
i + ȳi, q̄] = (31)

~β
∑
n

c2i
2mi
|qn|2

(
1

ω2
i

− 1

ν2
n + ω2

i

)
+~β

∑
n

mi

2
ω2
i |yn|

2
.

This equation can be found after performing some alge-
bra and neglecting all terms linear in yn since we already
know from (28) that they have to sum up to zero. The
first sum corresponds to the classical action and the sec-
ond to the perturbation around the classical path respec-
tively. Additionally having replaced the bath coordinates
xi trough system coordinates q, the only thing that we
are left to deal with is the perturbation term

Sint = ~β
∑
i

∑
n

c2i
2mi
|qn|2

(
1

ω2
i

− 1

ν2
n + ω2

i

)
(32)

Spert = ~β
∑
i

∑
n

mi

2
ω2
i |yn|

2
. (33)

Recalling that the ci are the coupling constants, if we set
these constants to zero this means that the bath is not
coupled to the system at all, i.e. there is no influence of

9 The Lagrangian is the integrand in (24).

the bath on the system. Going back to (21) we see that
if the bath has no influence on the system, the influence
functional F [q̄] has to reduce to one. Since Sint = 0 for
ci = 0 the action in (23) reduces to S = Spert which is
independent of q. This allows us to do the integration
in (23) over Spert independently of the choice of the
system. Furthermore this solution is already known, Zi
is just the partition function of a harmonic oscillator.
Consequently the perturbation part of the influence
equals to the product of the bath oscillator partition
functions, i.e. the integration over the perturbation part
cancel with the product of the partition functions.

We have now arrived at an expression for the influence
functional

F [q̄] =

N∏
i=1

ˆ
dxi

˛
Dx̄i exp

(
−1

~
Sint

)
(34)

which is only dependent on the interaction action Sint.
Unfortunately the interaction action is not in a simple
form yet. Our aim is to express it as a function of the
path q(τ) in a compact form. As the next step we do
the “reverse” Fourier series expansion, i.e. we plug in
the definition of the Fourier series coefficients into our
action. They are defined as

qn =
1

~β

ˆ ~β

0

dτe−iνnτq(τ). (35)

Using the Fourier series from the delta function and defin-
ing a function K(τ)

δ(τ − τ ′) =
1

~β
∑
n

eiνn(τ−τ ′) (36)

K(τ) =
∑
i

c2i
mi~β

∑
n

eiνnτ

ν2
n + ω2

i

(37)

we may rewrite (32) as

Sint =
∑
i

c2i
2miω2

i

ˆ ~β

0

dτq(τ)2

−
ˆ ~β

0

ˆ ~β

0

dτdτ ′K(τ − τ ′)q(τ)q(τ ′). (38)

Realizing that

ˆ ~β

0

dτ K(τ) =
1

2

∑
i

c2i
miω2

i

(39)

allows us to rewrite Sint as

Sint = (40)

1

4

ˆ ~β

0

ˆ ~β

0

dτdτ ′K(τ − τ ′)(q(τ)− q(τ ′))2.

Basically we are now done; we have succeeded in find-
ing a compact expression for the system-environment in-
teraction action. The difference of a system coupled to
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external degrees of freedom compared with an isolated
one, is given by a modification of the action within the
path integral approach. In the coupled case, the action
is defined as 10

Seff = SS + Sint. (41)

The form of the interaction action (40) gives rise to an
interesting feature of coupled systems. The double time
integral within the definition of this action leads to a so
called non-local term. But what does it mean for a term
being non-local?
When studying a system, one approach is to do a semi-
classical approximation, where we fluctuate around a
classical path. Applying the Euler- Lagrange equations
to obtain the classical path results in general to

Mq̈(τ) = (42)

∂

∂q
V (q(τ)) +

1

2

ˆ ~β

0

dτ ′K(τ−τ ′)(q(τ)− q(τ ′)).

The solution for the classical path at a certain time
depends on the solutions at later or earlier times, since
the second time derivative of q directly depends of the
integration over one whole period of q. We call this
integration appearing in the Euler-Lagrange equation
a non- local term. Physically speaking we see self
interaction of the system. Earlier states affect states at
later time and vice versa. This self interaction is realized
trough the coupling to an environment which serves as
an energy reservoir. This means energy may flow from
the system to the environment and then re-excite the
system at later times. It is also possible that energy
flows from the environment to the system right at the
start11.

The only thing that we still need to treat in (40) is the
function K(τ) since it is directly dependent on the os-
cillator frequencies, their masses and coupling constants.
In most cases one is not able to model these constants
directly. Therefore we again make use of the spectral den-
sity introduced in (7). Instead of modeling every single
oscillator, we think of them as if they where distributed
according to the spectral density J(ω). A relation be-
tween K(τ) and J(ω) would simplify our problem sub-
stantially. Observing that the second sum in the defini-
tion of K(τ) (37) can be considered as an Fourier series
expansion, we have

K(τ) =
1

2

∑
i

c2i
miωi

·
cosh

(
ω

[
~β
2
− |τ − τ ′|

])
sinh

(
ω
~β
2

) (43)

10 In the uncoupled case, Sint is just zero.
11 This case would then be the opposite of dissipation. Although

we aim to discuss dissipation we include this process of excitation
when we talk about quantum dissipation generally. In our dia-
gram in Figure 1 such processes are indicated by the fluctuation
arrow.

here we now recognize that replacing the sum with J(ω)
and subsequent integration over ω yield to the exact ex-
pression for K(τ).

SEint =
1

4π

ˆ ~β

0

ˆ ~β

0

dτdτ ′ (44)

×
ˆ ∞

0

dωJ(ω)

cosh

(
ω

[
~β
2
− |τ − τ ′|

])
sinh

(
ω
~β
2

) · (q(τ)− q(τ ′))2

This is the most general form for the interaction action
for such an environment. Considering ohmic damping
J(ω) = ηω one can actually perform the integration over
ω analytically and obtain

Sint = (45)

η

4π

ˆ ~β

0

ˆ ~β

0

dτ dτ ′
(
π

~β

)2
(q(τ)− q(τ ′))2

sin2
(

1
~β |τ − τ ′|

) .
Which finally enables us to write the density matrix ele-
ments in the desired form as

ρβ(q, q′) =
1

Z

ˆ
Dq̄ exp

[
−1

~
Seff[q̄]

]
. (46)

This section not only presented a way to calculate the
density matrix elements, it also showed how to charac-
terize coupled systems through an effective action Seff =
SS + Sint with

Seff[q̄] =

ˆ ~β

0

dτ

[
M

2
˙̄q2 + V (q̄)+

η

4π

ˆ ~β

0

dτ ′
(
π

~β

)2
(q̄(τ)− q̄(τ ′))2

sin2
(
π
~β |τ − τ ′|

)] (47)

for ohmic systems. It is quite remarkable that it is pos-
sible to condense the complex process of exchanging en-
ergy between a system and an environment with infinitely
many degrees of freedom in such a concise way. But even
more surprising is the fact that the above derivation is
completely general for every potential and it is non- per-
turbative. Furthermore we saw that coupling a system to
an environment leads to a non-local term and therefore
enables self interaction.

IV. APPLICATIONS OF THE FORMALISM

In the previous section we have learned that coupling
to a bath of harmonic oscillators can be treated within
the path integral formalism by adding an extra term, the
interaction term Sint, to the action. We now turn our
attention to the physics that arises from this modified
action. More specifically, we will look at the cubic and
quartic potentials discussed in previous chapters of this
proseminar and see how the interaction action affects the
system’s behavior.
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A. Decay from a Metastable State

As a first example, we investigate tunneling from a
metastable state under the influence of ohmic damping.
The principal goal of this example is to find the decay
rate Γ in a semi-classical approximation and to compare
it with the decay rate in the case of no damping.
Our metastable system is modeled by a cubic potential
of the form,

V (q) =
27

4
V0

( q
a

)2 (
1− q

a

)
(48)

where a is the width and V0 the height of the potential
barrier.

Figure 2. Cubic potential with a potential barrier of width a
and height V0. The frequency of small oscillations around the
metastable minimum at q = 0 is ω0 =

√
27V0/(Ma2).

.

For later convenience we define ω0 as the frequency of
small oscillations around the metastable minimum at
the origin.

In the previous chapter it was shown that the decay
rate of such a cubic system is given by

Γ ≡ 2 Im(E)

~
∝ A exp

(
−Seff[qb]

~

)
. (49)

Here qb was the so called bounce solution of the Euclidean
equations of motion that was associated with a negative
eigenvalue of the fluctuation operator and A is the fluc-
tuation determinant of this solution. It is this negative
eigenmode that gives rise to the imaginary part in the
energy after an analytic continuation and hence this so-
lution is responsible for the decay of the system12. Using
this result, we devise the following plan of attack for our
problem:

1. Find the effective action of the system and the Eu-
clidean equations of motion that follow from it.

12 For an excellent treatment of the undamped problem with in-
stanton methods see also [7] and [8].

2. Solve the Euclidean equations of motion to find the
modified bounce solution qb(τ).

3. Calculate the bounce action Seff[qb] to obtain the
exponential factor in the decay rate Γ.

Let us start with the first step. To simplify calculations
and make the physics more visible, we make the following
assumptions:

• Ohmic environment: J(ω) = ηω. This is the
simplest spectral density for a bath. It is also one
of the few cases that can be treated analytically.
The physical interpretation of such an environment
was discussed in detail in section I.

• Zero Temperature T = 0: This is equivalent to
taking the limit β →∞ and allows us to work with
Fourier transforms instead of Fourier Series. We
will relax this condition at the end of the section.

Using these two assumptions, we find that the effective
(Euclidean) action with ohmic damping (47) takes the
form

Seff[q̄] =

ˆ ∞
−∞

dτ

[
M

2
˙̄q2 + V (q̄)

+
η

4π

ˆ ∞
−∞

dτ ′
(
q̄(τ)− q̄(τ ′)
τ − τ ′

)2 ]
. (50)

From here we can already draw an important qualitative
conclusion. The interaction term in Eq. (50) is positive
definite. Thus in the small damping limit (η → 0),
where the classical bounce trajectory qb is not changed
to first order in η, the damped action is always larger
than the undamped action 13. This means that the
decay rate Γ is exponentially suppressed, compared to
the undamped case. In fact, this holds quite generally at
low temperatures and we can say as a rule of thumb that
coupling to an environment exponentially suppresses
quantum tunneling [3].

Let us proceed with our calculation. To find the decay
rate in a semi-classical approximation we must find the
classical paths, that is the stationary points, of the effec-
tive action. Using the Euler- Lagrange equations, we find
the Euclidean equation of motion for the classical paths
q(τ) 14

Mq̈ = V ′(q) +
η

2π

 ∞
−∞

dτ ′
q(τ)− q(τ ′)

(τ − τ ′)2
. (51)

The bar in the integral signifies that it is to be under-
stood as Cauchy principal value. This integro-differential

13 Later we will see that this holds for any η.
14 For readability we have dropped the subscript cl and the bar for

this example.
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equation is difficult to solve and has to be treated nu-
merically in general. But we can nonetheless learn about
some of the relevant physics by taking the limits η → 0
or η →∞. In the subsequent paragraph we will concen-
trate on the latter case and only state the underdamped
limit for comparison at the end. We refer to literature
for a more detailed treatment of the former case [9]. This
concludes the first step of our plan.

1. Overdamped limit (η →∞)

In the overdamped limit we can expand q perturba-
tively in 1/η and look at the leading order for a first
approximation. We also assume that V0 ∼ η, such that
we do not lose the effect of the potential altogether. In
this regime we find at leading order in η,

O(η) : 0 = V ′(q) +
η

π

 ∞
−∞

du
∂q

∂τ

∣∣∣∣
u

1

u− τ
(52)

Here the integral term from Eq. (51) has been rewritten
using the fundamental theorem of calculus and a change
of the integration order, after which the dτ ′ integration
can be performed explicitly.

To find the nontrivial (bounce) solution of this differ-
ential equation we note that the integral term is nothing
but a convolution. So after inserting our potential and
taking the Fourier transform of Eq. (52) we find an equa-
tion for q̂(ω) =

´∞
−∞ dτ q(τ) exp(iωτ) in Fourier space15

0 = Mω2
0

[
q̂(ω)− 3

2

ˆ ∞
−∞

dω′

2π
q̂(ω′)q̂(ω − ω′)

]
+η|ω|q̂(ω).

(53)
This equation can be solved by the Ansatz16

q̂(ω) = q̂0 exp

(
−|ω|
ωb

)
. (54)

Explicitly inserting this Ansatz into Eq. (53) yields the
parameters q̂0 and ωb. With an inverse Fourier transform
we find that the overdamped bounce action in (imagi-
nary) time is given by

qb(τ) =
(4/3)a

1 + (ωbτ)2
(55)

ωb =
ω0

γ
(56)

γ =
η

Mω0
, (57)

15 We used the relations 1/τ
∧

= iπsgn(ω), ∂τ q
∧

= −iωq̂ and the
convolution theorem.

16 One can guess this Ansatz for example from asymptotic consid-
erations of Eq. (51) from which it follows that q ∼ 1/τ2 for |τ |
large. This fall-off hints at a Lorentzian line shape and thus one
could try a Lorentzian Ansatz for q(τ). Hearteningly, our Ansatz
is just the Fourier transform of a Lorentzian.

where we have defined the dimensionless damping
parameter γ and the bounce frequency ωb. Let us take a
moment to dwell on this solution and look at the physics
it encapsulates.

First of all we see that the overdamped bounce

Figure 3. The undamped bounce (blue) is plotted versus the
bounce solution in the overdamped limit for various damp-
ing strengths γ. Two features are especially salient. The
overdamped bounce goes higher up and is wider than its un-
damped counterpart. An explanation is given in the text.
Note that strictly speaking these solutions become exact only
in the limit where γ → ∞ so that the height of the over-
damped bounce would increase continuously from 1 to 4/3 as
we increase γ.

solution has a Lorentzian shape with a ‘temporal’ width
of τb ≡ ω−1

b = γω−1
0 . Since the overdamped limit

corresponds to γ � 1 this means that the bounce takes
much longer to complete than in the undamped case,
where it had a width of τ0 = ω−1

0 . In a WKB picture the
particle spends more time under the barrier and so we
expect the tunneling rate to be decreased accordingly.
This is in line with our qualitative inspection of Eq. (50).

Secondly, we note that the modified bounce solution
has a higher peak in the Euclidean potential than its un-
damped equivalent. What could be the physical reason
for this behavior? A possible explanation arises when we
look at the potential in ‘normal’ time, where the particle
now appears to tunnel to lower energies. Hence it loses
energy as it goes through the barrier. This energy is
transferred to the ohmic heat bath to which our particle
is coupled. Thus we learn that in the presence of a
finite damping, there is a loss of energy during tunneling.

Now that we have found the modified bounce solution,
we can carry out the final step in our plan of attack. We
can calculate the bounce action to obtain the exponential
factor in the decay rate. With some persistence one can
solve the integrals in Eq. (50) for qb(τ) and arrive at the
bounce action

Seff[qb] =
4π

9
ηa2. (58)

Using Eq. (49) we can then immediately obtain the
decay rate Γ. We see that the tunneling rate is ex-
ponentially suppressed by a factor proportional to the



10

damping strength η and the width under the barrier a
squared. It is striking that this factor is independent of
the height of the potential. Note that our qualitative
inspection of Eq. (50), which was done for small η,
also holds true in the overdamped case: Tunneling is
exponentially suppressed in the damping strength as we
couple our system to the environment. This observation
can be seen as one of the arguments17 why we never
encounter quantum tunneling in our everyday life. Since
macroscopic objects like stones or cats are so strongly
coupled to their environment their tunneling rate is
infinitesimally small.

A nice second interpretation of this result can be given
in terms of the formal quantum theory of measurement.
A well-known feature of this theory is that any mea-
surement of a quantum system projects its state on an
eigenfunction of the measured observable. In our case we
can view the environment as measurement device that
repeatedly performs position measurements on our sys-
tem. This localizes the particle and thereby suppresses
quantum tunneling. Such an understanding can be made
more quantitative, as is done for example in Ref. [3].

2. Overdamped limit at finite temperature

After having calculated the zero temperature case ex-
plicitly, it is instructive to see how the results change for
nonzero temperature. The main difference and also diffi-
culty in the calculation is that we now have to calculate
a bounce trajectory which is periodic in imaginary time
with period ~β = ~/kBT . The interaction term in the
action is then given by Eq. (47). Renormalizing the mass
and the height of the potential [10], one can massage the
effective action to take the form

Seff[q̄] =

ˆ ~β

0

dτ

[
M

2
˙̄q2 + V (q̄)+

η

4π

ˆ ∞
−∞

dτ ′
(
q̄(τ)− q̄(τ ′)
τ − τ ′

)2 ]
. (59)

This looks familiar and indeed the structure of this effec-
tive action is equivalent to the effective action in the zero
temperature limit. The small but important difference
between the two situations is that the finite temperature
bounce has to fulfill periodic boundary conditions. This
case is treated best by expanding qb in a Fourier Series.
With analogous arguments to the zero temperature limit,
such an approach leads to the set of equations

0 = Mω2
0

[
qn −

3

2

∑
n′∈Z

qn−n′qn

]
+ η|ωn|qn, (60)

17 Another argument is that the tunneling rate for massive objects
is already small.

where qn is the n-th Fourier coefficient and ωn = 2π/~β.
We have one such equation for each Fourier mode n ∈ Z.
Note the similarity of this equation to Eq. (53).

With the Ansatz qn = q0 exp(−b|n|) we find the pa-
rameters

q0 =
4π

3

ω0

~β
γ (61)

tanh(b) =
2π

~β
1

ω0
γ =

T

T0
(62)

T0 ≡
~ω0

2πkBγ
(63)

with the crossover temperature T0. The origin of the
name is that the temperature T0 marks a division
between two regimes. For T → T0 we have b → ∞
and so qb(τ) ≡ q0. This disappearance of the bounce
type motion signifies a regime change. As we increase
the temperate to the crossover temperature, thermal
activation across the barrier becomes more and more
important and ultimately overtakes quantum tunneling
as the main decay channel. As we increase the tempera-
ture, the exchange of energy between system and bath
leads to a phase transition when T is of the order of T0.

By plugging this into the action one finds in the over-
damped limit γ →∞ [11],

Seff[qb, T ] =
4π

9
ηa2

[
1− 4

3

(
T

T0

)2

+ . . .

]
. (64)

We find that for small T the first corrections to the action
come at O

(
T 2
)

and are negative, which means they will

increase the decay rate18.

3. Underdamped limit at finite temperature

For completeness we will state the result for weak cou-
pling to the environment. Once again, one resorts to a
perturbative treatment around the undamped bounce via
an expansion in order of η and employs a Fourier series
expansion to treat the finite temperature case [9]. After
some algebra one arrives at the expression

Seff[qb, T ] =
36

5

V0

ω0

[
1 + γ

{
45ζ(3)

π3

− 5

2π

(
T

T0

)2

− π

12

(
T

T0

)4

+ . . .

}
+O

(
η2
)]
. (65)

18 Heuristically one could guess this by the following argument. At
low temperature corrections appear because the bounce has to
have a period ~β. For the overdamped case we found qb(τ) ∼
1/τ2 and so we expect the temperature corrections to appear at
leading order with ∆S(T ) ∝ T 2.
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In this expression the crossover temperature T0 is defined
as T0 = ~ω0/(2πkB)19. Again the first correction due to
the damping is proportional to γV0/ω0 = (2/27) ηa2,
which is independent of the height of the potential. The
first temperature corrections also come at O

(
T 2
)
, as in

the strong coupling limit. Note also that as γ → 0 the
standard undamped solution is recovered. The obtained
values for the effective action in both the over- and un-
derdamped limits are summarized in Table I.

Figure 4. Arrhenius plot for the decay rate Γ of a metastable
state as a function of inverse temperature. The system is cou-
pled to an ohmic environment and curves are shown for three
values of the coupling parameter γ. The different regimes are
roughly indicated by background colors (red - thermal activa-
tion, yellow - crossover, blue - quantum tunneling). The plot
is adapted from [11].

4. Summary of results for the damped metastable system

In this first example we focused on the effects that cou-
pling to an environment has on the decay of a metastable
system. To conclude, let us briefly summarize the main
points.

1. At zero temperature coupling to an (ohmic) envi-
ronment suppresses quantum tunneling exponen-
tially with the damping strength η and the width
under the barrier a squared. The suppression is
independent of the height of the potential.

2. The bounce solution in the dissipative case was
found to have a higher peak in the Euclidean poten-
tial than the undamped bounce. This characterizes
the loss of energy during tunneling in the presence
of coupling to an environment.

19 In general the crossover temperature depends on the coupling
to the environment. The all-order expression is T0(γ) =
~ω0

2πkB
(
√
γ2/4 + 1− γ/2).

3. As T approaches the crossover temperature T0

(which depends on the coupling parameter γ), there
is a phase transition from a regime where quantum
tunneling is the primary decay channel (low tem-
peratures) to a regime where thermal activation is
the main decay mechanism.

An illustration of the combined effects thermal activation
and quantum tunneling is shown in the Arrhenius plot
in Figure 4. The red shaded region corresponds to the
limit where thermal activation is mainly responsible for
the decay. Here temperatures are high compared to the
crossover temperature and the decay rate shows the
typical exponential (Boltzmann) dependence on inverse
temperature. The crossover regime, where quantum
tunneling and thermal activation interact to produce a
more complicated dependence, is roughly given by the
yellow region. In the blue region the curves flatten out,
indicating that temperature independent quantum tun-
neling takes over as the primary decay mechanism. Note
that with increased damping strength the crossover from
the thermal to the quantum regime becomes less distinct.

B. Qualitative Results of dissipation within the
double well potential

In this section we will present the effect of coupling a
particle in a double well potential to an ohmic environ-
ment.20 All presented results and figures in this section
are adapted from [12]. In Figure 5 the double well po-

Figure 5. Symmetric double-well potential, the first two en-
ergy levels (horizontal lines) and localized states
|L/R〉 = (|E1〉 ± |E2〉)/

√
2.

tential with its lowest two energy levels is shown. The
height of the wall is chosen to be ∆U and the width

20 Actually the environment is not purely ohmic. To make the
system physical we introduce an exponential cut-off. J(ω) =
ηω exp (−ω/ωc) with ωc � ω0.
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Table I. Results for the cubic potential coupled to an ohmic environment. The effective actions for the different coupling limits
are presented. Terms of order O

(
η2
)

in the weak coupling and O(1) in the strong coupling limit have been neglected.

Weak coupling limit (η → 0) Strong coupling limit (η →∞)

T = 0

Bounce qb(τ) a sech2
(ω0

τ

) (4/3)a

1 + (ω0τ)2

Action Seff[qb, T = 0]
36

5

V0

ω0
+

24 ζ(3)

π3
ηa2 4π

9
ηa2

T ≥ 0 :

Crossover Temp. T0 T0 =
~ω0

2πkB
T0 =

~ω0

2πkB

1

γ

Action Seff[qb, T ]
36

5

V0

ω0
+

8

15
ηa2

[
45ζ(3)

π3
− 5

2π

(
T

T0

)2

− π

12

(
T

T0

)4

+ . . .

]
4π

9
ηa2

[
1− 4

3

(
T

T0

)2

+ . . .

]

scales with ω−1
0 according to V (q) =

M2ω4
0

64∆U q
4 − Mω2

0

4 q2.
The states |L〉 and |R〉 are position eigenstates according
to a discrete variable representation (DVR).

1. Discrete Variable Representation

In the limit of low temperature one can argue that
a system is constrained to the lowest few energy eigen-
states, since the probability of finding it without excita-
tions in higher energy states decreases exponentially. For
our purpose, let us consider the lowest n energy eigen-
states, hence our now truncated Hilbert space is defined
as H = span{|E1〉 , |E2〉 , . . . |En−1〉 , |En〉}. In the fol-
lowing section we will investigate the tunneling rate be-
tween the left and right well and therefore it is important
to know the position eigenstates. Having a n dimensional
Hilbert space implies that we have n position eigenstates
(|Qi〉) such that within this Hilbert space a particle can
only be localized at n discrete positions (Qi). The posi-
tion operator in the energy basis reads as qij = 〈Ei|q̂|Ej〉.
Diagonalizing leads to the eigenfunctions and the corre-
sponding positions as eigenvalues.

2. Double-Doublet System

For the following discussion we apply a DVR consid-
ering the lowest four energy eigenstates. The double-
doublet system is shown in Figure 6. It is called so, since
it consists of four energy levels distributed in two groups
of two levels. This motivates us to define frequencies cor-
responding to the energy gaps. Ω0 = ω4+ω3

2 − ω2+ω1

2 ≈
0.82ω0, Ω1 = ω4 − ω3 ≈ 0.12ω0 and Ω2 = ω2 − ω1 ≈
0.004ω0. Here ωi corresponds to the i-th energy level
Ei according to Ei = ~ωi. Applying the DVR and di-
agonalizing the position operator leads to the position
eigenstates presented in Figure 7. Two of them are lo-
cated within the left well and the other two in the right

Figure 6. The double-doublet system. Dashed lines corre-
spond to the energy eigenstates. The blue lines indicate the
corresponding energy levels. Two groups consisting of two
energy levels can be observed.

one. Compared to Figure 5 where a two level system
(TLS) is considered we now have two positions per well
which allows intra well motion. The time evolution of the

Figure 7. The double-doublet system. Dashed lines corre-
spond to the position eigenstates according to the DVR with
the lowest four energy eigenstates.

double-doublet system without any dissipative effects is
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shown in Figure 8. Initially the particles location is set
to be |Q1〉, i.e. it is located in the left well. Figure 8
then shows the probability that the particle is found in
the left well after a certain time. The main oscillation
is given by the fluctuations between the first two energy
levels with frequency Ω2. This is not surprising since the
probability densities should be the highest for these two
(lowest energy) states. A second oscillation occurs due
to the energy gap within the upper group with frequency
Ω1 in Figure 8. There is actually a third oscillation, but
the resolution is not high enough to display it. This oscil-
lation happens at much faster time scales with frequency
Ω0. We call all these oscillations coherent oscillations.
This reflects that phase information is conserved over
a certain time interval. Physically the different energy
eigenstates begin to interfere and as a result the particle
tunnels from the left well to the right well and back again
with some determined constant frequency. In this case
without dissipation, these oscillations will go on forever.

Figure 8. The free system is initially in the state |Q1〉. The
blue curve corresponds to the TLS whereas the red one cor-
responds to the four-level system.

3. Dissipation

Until now we have used the imaginary time path in-
tegral formalism to calculate density matrix elements.
Without introducing the real time path integral formal-
ism21 in full detail, let us give some of its key features.
Instead of calculating the density matrix directly, Feyn-
man and Vernon expressed its time evolution through
the propagator and calculated it with real time path in-
tegrals. Within our four-level system the time evolution
of the propagator is given as

ρq,q′(t) =

Q4∑
q0,q′0=Q1

G(q, q′, tf ; q0, q
′
0, t0)ρq0,q′0(t0). (66)

21 The real time path integral formalism was introduced in 1963 by
Feynman and Vernon [2]. For a proper derivation of the following
statements, we refer the reader there and to [12].

Here the propagator can be understood as a product of
two single propagators since we have to consider the evo-
lution of both, q and q′. Such a propagator is given by

G(qf , qi, tf , t0) =

ˆ q̄(tf )=qf

q̄(t0)=qi

Dq̄ exp

(
i

~
S[q̄]

)
. (67)

The total propagator is then found to be

G(q, q′, tf ; q0, q
′
0, t0) = (68)ˆ q̄(t)=q

q̄(0)=q0

ˆ q̄(t)=q′

q̄(0)=q′0

Dq̄ Dq̄′ exp

(
i

~
S[q̄, q̄′]

)
,

with S[q̄, q̄′] = S[q̄] − S[q̄′]. But what is a path in the
DVR for this double path integral? Figure 9 illustrates
this nicely. As we have discretized, a path is no more a
smooth function q̄(τ), but rather it consists of a sequence
of coordinates {(q′, q)i} and times {ti} indicating that the
position of the particle changes at time ti from position

(q′, q)i to (q′, q)i+1. The measure
´ q̄(t)=q
q̄(0)=q0

´ q̄(t)=q′
q̄(0)=q′0

Dq̄ Dq̄′

Figure 9. Example of a path with five transitions within the
DVR.

then reduces to the sum

∞∑
n=0

∑
pathsn

ˆ tf

t0

dtn

ˆ tn

t0

dtn−1 . . .

ˆ t2

t0

dt1 . . . (69)

where n is the number of transitions and
∑

pathsn
is the

sum over all possible path configurations. This allows us
to calculate this path integral numerically. Of course one
needs to make some additional approximations such as
e.g., considering the number of transitions to be less than
a fixed integer N . In Figure 10 the analogue of Figure
8 is shown, but now including dissipation. The temper-
ature is set to be very low and the coupling very weak.
For more detailed phase information and the approxima-
tions made to obtain these results we refer the reader to
[12]. The oscillations remain the same. But as expected
they get damped, similarly to a damped harmonic os-
cillator. In Figure 11 the same plot is shown, but now
for stronger coupling. Again there are two visible oscil-
lations but in this case they flatten out much faster. We
still talk about coherent oscillations, since there exists
a time interval where the particle tunnels from the left
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Figure 10. Time evolution of the populations for very low cou-
pling and very low temperature. The black line corresponds
to the probability that the particle is in the left well and the
blue line to the right.

to the right and back again (on average). If we define
the coherence time as the length of the time interval over
which phase information is (on average) predictable we
may state that stronger coupling leads to shorter coher-
ence times. But what is the influence of temperature?

Figure 11. The same as in Figure 10 but now with stronger
coupling.

Figure 12 shows the occupation probabilities for all four
position eigenstates. In Figures 8, 10 and 11 we plotted
in each case the sum ρ11 + ρ22 i.e. the probability that
the particle is in the left well. Instead here, we are able
to look at oscillations between position states within the
wells. First of all, there is no oscillation seen between
the wells, but there is an oscillation within the left well.
The coherence time in this case is very short compared to
those from Figures 10 and 11. In the right well there is no
oscillation at all. How did this process of flattening out
happen so fast if the coupling is high enough that the
particle could not tunnel coherently to the right? The
solution is thermal excitations, since the bath has finite
temperature it is possible that it excites our particle. Af-
terwards it may tunnel or just jump to the right if it
gained enough energy.

Figure 12. Occupation probabilities for all four position eigen-
states (red line). The blue line indicates the solutions of Fig-
ures 10 and 11 at t = ∞. In this case we take intermedi-
ate temperature and strong coupling. The particle oscillates
within the left well but there are no oscillations seen in the
right one.

V. CONCLUSION

To bring our discussion of dissipative quantum systems
to an end we take a brief look back at the main themes
of this report.

We have learned that an environment can be modeled
in quantum mechanics by adding a linear coupling to a
bath of harmonic oscillators to the Hamiltonian. It then
turned out that the path integral formulation of quan-
tum mechanics provides a powerful setting to explore
this extended Hamiltonian. When we averaged over the
bath oscillator modes to find an effective description of
our system we found that the intricate interaction be-
tween system and environment amounted to adding the
compact, additional term SEint to the total system action.
This additional term in the action is the main result of
this discussion.

To develop an intuition of some of the physics con-
tained in this action, we looked at a metastable and a
double well potential. These illustrated dissipative quan-
tum tunneling and the loss of phase coherence respec-
tively. Two results specifically stand out. For the first
problem we demonstrated that environmental coupling
exponentially suppresses quantum tunneling. In the sec-
ond problem we found that by exchanging energy with
the surrounding heat bath, the system can lose its phase



15

coherence and hence its quantum mechanical character.
We may therefore conclude that in both cases dissipa-
tion makes the system more classical in the sense that it
suppresses the purely quantum effects of tunneling and
interference.

In our brief survey we only touched on small part of
this broad field of research and highlight some of the
guiding principles. For readers interested in learning
more about dissipative quantum systems and their
role in the loss of quantum coherence we especially

recommend references [3] and [13].
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